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Evidence of longitudinal vortices evolved from
distorted wakes in a turbine passage
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(Received 4 January 2000 and in revised form 6 May 2001)

Two types of longitudinal vortices are found to arise from distorted, migrating wakes
convecting through a low-pressure turbine stator passage. The primary vortices emerge
within the free stream as the wake is subjected to irrotational strains. Their axes align
approximately with the local mean wake velocity. They are dragged over the surface
and induce secondary vortices near the wall, which have the opposite sense of rotation
to the primary vortices. Although they form on the concave side, these secondary
vortices are neither produced, nor sustained by Görtler instability; rather, they are a
consequence of severely straining the passing wakes.

Evidence is drawn from a numerical simulation of the unsteady, incompressible
flow through a turbine stator passage with and without upstream turbulent wakes.
The computations were performed with 2.5 and 5.7 × 107 grid points on a parallel
computer.

1. Introduction
Flow in turbomachinery has long been a source of interesting fluid dynamics.

Distortion of the rotational part of the mean flow is integral to analyses of flow
through turbine passages (Hawthorne & Novak 1969; McCune & Hawthorne 1976).
However, the nature of the unsteady flow caused by rotor wakes passing through a
stator passage is only now in the process of being understood (Sharma & Stetson
1998). In this paper we report an intriguing behaviour of those wakes.

The data presented herein are from a direct numerical simulation (DNS) of tur-
bulent wakes swept past the inlet of a low-pressure turbine (LPT) cascade. The LPT
is installed in jet engines upstream of the propelling nozzle, supplying power to the
fan and first compressor stages. A feature of the LPT is that representative Reynolds
numbers are in a range where DNS is practicable (Hodson 1998); also, the aspect
ratio is relatively high and the Mach number relatively low. The present simulations
are for a section of mid-span, with the incident mean wake vorticity parallel to the
leading edge (figure 1). The flow is turned by more than 100◦ and accelerated by a
factor of about 1.9, producing significant streamwise straining. The magnitude and
direction of the principle axes of strain vary with position. These particular features –
large rate of strain, varying orientation, incident wake – produce an intriguing vortical
structure inside the turbine passage, which has not previously been discovered.

In our initial simulations, near-wall velocity signals revealed characteristics rem-
iniscent of intense streamwise vortices on the concave, pressure side of the blade.
The possibility of Görtler instability was raised. Görtler vortices are known to be
determined by upstream conditions and to grow slowly (Floryan 1991). It seemed
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Figure 1. Sketch of the observed wake disotrtion, wake-induced transition, primary type
longitudinal vortices as well as flow velocity vectors in the present simulation.

that other processes must be involved. The possibility also existed that large straining
along the pressure surface was the primary source of the vortices; or were they simply
highly strained Görtler vortices? Vortex identification in three dimensions using the
DNS database provided convincing evidence that a new mechanism was at work.
Hairpin vortices were being produced well above the wall, within the incident wake.
They were then stretched along the surface, producing an opposite signed vortex
in consequence of the viscous boundary condition; this, not Görtler instability, was
causing the intense streamwise vortices. The features of this phenomenon provide
intriguing observational fluid dynamics.

Various aspects of the distortion of (wake) vorticity have been studied in the
literature. Sutera, Maeder & Kestin (1963) proposed a mathematical model for a
steady, plane stagnation flow into which perturbation vorticity is introduced. They
demonstrated that vorticity amplification by stretching of vortex filaments in the
stagnation-point flow was an important mechanism. The essence of the model is that
vorticity of a scale larger than a certain neutral scale, and appropriately oriented,
can be selectively amplified as it is convected towards the stagnation point. Such
vorticity, present in the oncoming flow with small intensity, can be greatly magnified
in intensity and induce a large three-dimensional effect.
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Sadeh (1968) injected smoke near a stagnation-point boundary layer and pho-
tographed the resulting flow pattern. Visualization showed that streamlines were
wrapped around vortex cores in helical spirals, whose axis was in the streamwise
direction.

Kestin & Wood (1970) attempted to mathematically explain Sadeh’s visualization
as an instability. They argued that a uniform flow approaching a two-dimensional
stagnation point is inherently unstable; random disturbances carried by the free
stream cause the flow to become three-dimensional. An analogy was drawn between
this and concave boundary layer instability. However, to close their own analysis they
resorted back to the vorticity amplification theory of Sutera et al. (1963).

The works of Lin & Corcos (1984) and Neu (1984) are of some tangential relevance.
They studied the dynamics of a layer of vortices aligned parallel to the principal axis
of a uniform plane straining flow. They found that an array of alternating vortices of
elliptical cross-section with weak circulation will undergo slow decay due to viscous
diffusion; but a layer of sufficiently strong vortices will buckle and break into a set
of concentrated circular vortices. The process observed herein is somewhat different.
No streamwise vortex sheet precedes the disruption of the wake into distinct vortices.
It is unclear whether the analysis of roll-up of streamwise vortex sheets has a bearing
on the problem of wake distortion.

DNS studies of idealized, strained turbulent wakes by Rogers (2000) suggest that
the structure of the turbulence depends strongly on the orientation of the strain rela-
tive to the wake. Rogers (2000) visualized strained, temporally developing wakes using
contours of spanwise vorticity magnitude over an (x, y)-plane. When spanwise stretch-
ing was applied, structures become more organized. Fewer vortical eddies were seen
across the streamwise direction, and regions of apparently non-vortical fluid emerged.
As time progressed, the stretched vortical structures tended to amalgamate with other
vortical regions of the same sign, further increasing the apparent organization of the
flow.

Wakes under spanwise compression exhibited many small-scale vortical eddies with
little over-all large-scale coherence or organization. Rogers felt his results were con-
sistent with previous experiments of Keffer (1965), and with the analysis of Lin &
Corcos (1984).

Our flow is perhaps more analogous to the simulations of streamwise straining.
Rogers found that with streamwise stretching (his Case D), there were significant
non-vortical regions and the vortical eddies were quite elongated along the x-axis
of the wake. Streamwise compression (Case C) brought about many small-scale
structures and rapid growth of wake width. Large-scale organized motions were not
able to develop in the presence of streamwise compression and cross-stream stretching.
These observations are suggestive of the strained migrating wake behaviour seen near
the pressure and suction sides of the turbine passage.

2. Numerical considerations
2.1. Problem definition

Consider the evolution of an incompressible flow through a smooth turbine passage,
as in figure 1 and figure 2. Upstream wakes traverse the inlet periodically. The Carte-
sian system x-, y- and z-axes refer to the axial, tangential and spanwise directions,
respectively. Lengths are normalized by the blade axial chord L. The blade pitch is
0.9306, and true chord length is 1.1647. Inlet and outlet planes of the computational
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Figure 2. Cross-sectional view of the computational domain and one level of multigrid mesh
(1153/64, 385/64, 129/129); B (0.0, 0.010289), C (1.0, −0.572873), F (1.0, 0.357727), G (0.0,
0.940887).

domain are at x = −0.5, and x = 2.0, respectively. The spanwise dimension is pre-
scribed as 0.15. That was found to be sufficient for independence of the computations
from the size of the computational domain.

Upstream, the flow velocity is Uref = 1.0, and makes an angle α = 37.7◦ with the
x-axis. The characteristic Reynolds number is then Re = UrefL/ν where ν is the
kinematic viscosity of the fluid. Throughout this study Re = 1.48× 105. The designed
exit flow makes an angle of −63.2◦ with the x-axis.

The wakes are generated by imaginary circular cylinders moving in the y-direction
at Ucyl = −1.2048. The cylinders are equally spaced so that they cut through an
(x, z)-plane at a specified passing periodT. For the given pitch and Ucyl ,T = 0.7724.
The mean flow properties of the wake correspond to those produced by 0.01177
diameter cylinders positioned at x = −0.33.

The blade, named T106, has been used for a number of compressible flow mea-
surements reported by Weiss & Fottner (1995), Engber & Fottner (1996) and Duden,
Raab & Fottner (1999). Most of that work was on secondary flow and endwall effects.
The blade profile is representative of those in LPTs.

2.2. Governing equations and notation

Mass and momentum conservation are enforced by solving the full time-dependent,
continuity and Navier–Stokes equations:

∇ · u = 0, (2.1)

∂u

∂t
+ ∇ · (uu) = −1

ρ
∇p+ ∇ ·

{
1

Re
[∇u+ (∇u)s]

}
, (2.2)

where u is the velocity vector and superscript S denotes transpose. The equations are
in non-dimensional form.

In this paper, time-averaging is represented by an overbar. Averaging at a particular
phase, tmnT = mT+ nTT, is denoted by 〈·〉, where m is any integer. 0 6 nT 6 1 is the
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fraction of the wake passing period. For example, the phase-averaged mean velocity
components are evaluated as

〈ui〉(tnT) =
1

M

M∑
m=1

ui(t
m
nT), (2.3)

where M is the total number of periods within which phase-averaging is performed.
Additional averaging over the spanwise, z, direction is implied in both time-averaging
and phase-averaging. Time-averaged and phase-averaged mean velocities are related
via ūi = 〈ui〉. Thus the instantaneous velocity can be decomposed as

ui = 〈ui〉(tnT) + u′i(tnT) = ūi + ũi(tnT) + u′i(tnT), (2.4)

where ũi(tnT) = 〈ui〉(tnT) − ūi is the periodic velocity fluctuation with respect to the
time-averaged mean, and u′i(tnT) is the true stochastic turbulence fluctuation.

2.3. Grid generation

DNS poses a more stringent mesh requirement than Reynolds-averaged computation.
For the present case, turbulence carried by the wake needs to be resolved in the
upstream flow, in the free stream inside the turbine passage, and on the blade wall
boundary layers. These requirements favour use of an H-type mesh. Unfortunately,
even with the use of an elliptic grid generation scheme, the high degree of distortion
of the computational domain shown in figure 2 results in discontinuity of the grid
transformation Jacobian in the interior, since the control functions evaluated at the
boundaries (near x = 0 and x = 1) are not smooth. We have been able to generate an
H-type grid with good quality in the turbine passage by applying parabolic smoothing
to the control functions appearing in the elliptic grid generation scheme of Hsu &
Lee (1991). The mesh possesses continuous derivatives to the second order in the
interior of the computational domain (e.g. ∂2x/∂ξ2, ξ is the streamwise curvilinear
coordinate) and the grid lines are nearly orthogonal to boundaries (figure 2).

2.4. Inflow, cyclic and other boundary conditions

Inflow boundary conditions, including the manner by which wakes are introduced
into the computational domain, are nearly identical to those documented in Wu et
al. (1999) and Wu & Durbin (2000a, b). In the present computation, equation (7) of
Wu et al. (1999) takes the following modified form:

uinflow = uref cos α+

(
cos β

N∑
q=1

ueff ,wake,q − sin β

N∑
q=1

veff ,wake,q

)
,

uinflow = uref sin α+

(
sin β

N∑
q=1

ueff ,wake,q − cos β

N∑
q=1

veff ,wake,q

)
,

winflow =

N∑
q=1

weff ,wake,q,


(2.5)

where α and β are defined in figure 1, and all other notation conforms to that in Wu
et al. (1999). For the flow conditions described in § 2.1, the inlet maximum wake deficit
and wake half-width are prescribed as 0.18 and 0.04, respectively; ueff is obtained
from a separate simulation of an evolving wake. The fully developed wake is swept
across the inflow boundary. The transformation (2.5) is from the ‘rotor’ frame of the
wake generator, to the ‘stator’ frame of the passage.
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Compared to flows around an isolated airfoil, the most distinctive geometric feature
of turbomachinery flows is its repetitiveness in the tangential, y-direction. In a typical
axial turbine passage the pitch-to-chord ratio is about 1. This distance is substantially
larger than the length scales of the turbulent eddies inside the blade boundary layer,
and also larger than those contained in the incident wake. For these reasons, little
error is caused when the two boundary pairs AB/HG, and CD/FE (figure 2) are
treated as both statistically and instantaneously periodic; this is an artifice of using a
single passage.

With the choice of a H-grid, the upper (HE) and lower (AD) boundaries are of
hybrid type: part cyclic and part no-slip. This poses potential problems for solution
of the discretized Poisson equation: although arguments exist that no boundary
condition for the discretized Poisson equation is necessary, in practice homogeneous
Neumann conditions are applied on all non-cyclic boundaries (Rosenfeld & Kwak
1993; Wu et al. 1999). In the present work, a homogeneous Neumann condition for
pressure is applied on inflow and outflow boundaries, AH/DE, as well as on turbine
blade surfaces BC/GF. On the pairs AB/HG and CD/FE cyclic matching is applied
to the pressure and the associated velocity.

2.5. Computational details

Numerical integration is by the fractional step method of Rosenfeld, Kwak & Vinokur
(1991) for unsteady, incompressible Navier–Stokes equations in generalized coordinate
systems. The governing equations are discretized by finite volumes on a staggered
mesh. The dependent variables are pressure p and volume fluxes across the faces of
the cells. Transformation between Cartesian velocity components and volume fluxes is
made using area vectors and their reciprocals (Rosenfeld et al. 1991). Divergence-free
flow is obtained by solving a discrete Poisson equation (Rosenfeld & Kwak 1993).

Convergence of the discretized Poisson equation was accelerated by the multigrid
method, after Fourier transformation along the span. For each wavenumber, the
decoupled two-dimensional Helmholtz system is solved using a V-cycle multigrid
subroutine. Following Rosenfeld & Kwak (1993), cell-wise coarsening is adopted
instead of the usual pointwise coarsening. Scalable parallelization is achieved with
the OpenMP Fortran Application Program Interface.

Simulations were performed on a 57 million point grid (1153, 385, 129 points in
the streamwise, wall-normal and spanwise directions, respectively) and a preliminary
simulation was done on a 25 million point grid (769, 257, 129). In the fine grid,
288 streamwise points are distributed upstream of the leading edge along AB/GH,
and 576 points are used on the blade along BC/FG. The grid used in Wu et al.
(1999) on a flat plate was (1025, 401, 129). The Reynolds number and characteristic
computational domain dimensions are similar for the present flow and that in Wu
et al. (1999). Hence, we have relied on extensive resolution studies in that simpler
geometry.

The theme of this paper does not demand extensive discussion of grid resolution,
but some comments are in order. Figure 2 shows a subset of the fine computational
grid (1153, 385, 128). Along the streamwise and normal directions, only one out
of 64 grid points is plotted. Subsequent contour plots are produced using the full
grid, but the vector plots (figures 4b, 11, etc.) were drawn using a subset of the full
computational grid. In addition, all the three-dimensional contour surface plots (e.g.
figure 14) were also drawn using a subset of the full grid so that post-processing
could be done within the computer memory limit. Near the suction-side trailing edge,
where the boundary layer is transitional, there are approximately 35 to 40 points
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inside the boundary layer, in the transverse direction. Note there is a total of 385
points in this direction: the majority of points are distributed in the turbine passage,
which serves the purpose of this investigation, since our primary concern is to resolve
the distorted wake. Other investigations on boundary layer dynamics most likely
would adopt a reverse strategy, using fewer points for the wake inside the passage.
For the coarse resolution test (769, 257, 129) we used a more severe stretching factor
along the y-direction to compress the grids towards the wall. Figure 3 compares the
wall-static pressure coefficient using the two sets of grids. It is not illustrated here, but
the coarse grid shows the same wake distortion scenario as will be presented below.
The phenomena of interest were found to be insensitive to grid resolution.

In the multigrid procedure for the Poisson solver, the computational mesh is halved
six times. A maximum of three V-cycles is applied at each time step, and three pre-
and post-successive line over-relaxation iterations are applied for every cycle. The
residual threshold was set to 10−7.

The time step was dt = 1.295× 10−4T = 1.0× 10−4L/Uref . This maintains a CFL
number less than 1. Such a criterion is mandated by requirements of stability and
time accuracy. It has been found satisfactory in many DNS studies, and certainly
suffices for the present study of wake distortion. The velocity field was allowed to
evolve for about 5 wake passing periods (38 620 dt) and statistics were then collected
for another 10 wake passing periods. Phase-averaging was performed by dividing
each passing period into 25 equal subdivisions. The computation was carried out on
an SGI Origin 2000s using 64 processors.

3. Distorted migrating wakes and straining
In this section we describe the distortion of migrating wakes in the turbine passage

by the base-flow strain rate field. The material will facilitate subsequent discussion on
the main subject of the paper: longitudinal vortices evolved from strained wakes.

Figure 3 shows the wall static-pressure coefficient Cpw = 2(p̄− p̄A)/U2
ref . Experimen-

tal data are from measurements on the T106 blade, kindly made available to us by Dr
Peter Stadtmueller of the Universität der Bundeswehr München in Germany. Small
discrepancies between the simulation and experiments might be attributed to endwall
effects, different inflow conditions and compressibility. In the experiments the inflow
was seeded with grid turbulence but with no passing wakes. The span-to-chord aspect
ratio was only 3 – which, still, is relatively large compared to high-pressure turbines.

The focus of the present paper is on vortices near the pressure side of the passage.
Flow near the pressure surface is under zero pressure gradient from xw = 0.015 to
0.6, after which it changes to sharply favourable. Subscript w refers to a surface
value. On the suction surface, favourable streamwise pressure gradient dominates
from xw = 0.03 to 0.6, followed by a strong adverse pressure gradient. In a short
region on the suction side near the leading edge (xw < 0.03) there is a very strong
adverse pressure gradient.

Principal stresses σ1 (positive) and σ2 (negative) of the mean strain rate tensor Sij
are plotted in figure 4(a). Arrows indicate directions of the principal axes. Inside the
turbine passage, except near the suction-side leading edge, σ1 is directed approximately
towards the turbine exit flow direction, and σ2 is directed roughly in the turbine inflow
direction. A fluid element is stretched in the direction of σ1 and compressed along
the direction of σ2.

The magnitude of the strain rate is stronger near the suction side of the blade.
Because the migrating wake changes its orientation inside the passage (figure 1), the
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Figure 3. Time-averaged wall static-pressure coefficient Cpw; present DNS: — —, (no wake); ——,
(with wake, 769 × 257 × 129 mesh); · · · · · ·, (with wake, 1153 × 385 × 129 mesh). The symbols are
experiments by Professor L. Fottner’s group at Universität der Bundeswehr München with varying
inlet free-stream turbulence intensity and Mach number, but without an upstream passing wake.

directions of σ1 and σ2 intersect the wake axes differently near the pressure side
from near the suction side. This is illustrated in figure 4(b). Near the pressure side,
compression is applied along ywake and stretching is applied along xwake (figure 1). At
the bow apex, where the wake is bent backwards near the suction side, stretching
is applied along ywake and compression is now in the xwake direction. In figure 4(b)
the bold double arrows indicate fluid velocity relative to a material element centred
in the local wake reference frame. The type of strained wakes sketched near the
pressure-side surface corresponds roughly to Case D of the temporally developing
strained wake simulations by Rogers (2000); the type of strained wakes sketched at
the bow apex side corresponds to his Case C. Rogers found velocity deficit, width
and turbulence fluctuations in Case C to increase with time; they all decayed in the
Case D wake. The explanation is quite simple: a temporally developing parallel flow
consisting of a mean rate of strain plus a wake is U = ax + Uwake(y, t), V = −ay.
If the wake defect is defined by ∆ =

∫ ∞
−∞(U∞ − Uwake(y))dy, then the x-momentum

equation shows that d∆/dt = −2a∆ (Rogers 2000). If the straining is positive along
the wake, a > 0 and the defect will be weakened; if it is negative the defect increases.

A pair of spanwise, counter-rotating vortices separated by the thickening bow apex

Figure 4. (a) Principal stresses and principal axes σ1 (dark arrows) and σ2 (light arrows) of the mean
strain rate tensor Sij (without wake) inside the turbine passage; ——, σ1 = 1.25; — —, σ1 = 1.75;
· · · · · ·, σ1 = 2.25; − .−, σ1 = 2.75; , σ1 = 3.25. (b) Periodic fluctuating velocity vectors of the
wake passing flow at one phase; × mark 0.1 6 xw 6 0.9 with increment 0.1.
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Figure 5. Integrated effect of the mean strain rate tensor Sij on passive particles having the same
inlet inclination angle as the upstream wake.

is apparent in figure 4(b). This can be explained as a local concentration of vorticity
produced by convection. Consider the motion of a streak of passive material particles
through the turbine passage in the given base-flow velocity field. Figure 5 illustrates
their motion. The particles are released into the time-averaged mean velocity field at
the same inclination angle β as the inlet wake. Solid and open circles in the figure
help to visually identify a particular material particle. Connecting the trajectory of
a marked particle makes a pathline. The apparent similarity between the distorted
passive material streak in figure 5 and the distorted migrating wakes in figure 1 and
figure 4(b) demonstrates that convection and straining by the irrotational base-flow
velocity field dominate the wake deformation process.

Figure 4(b) shows that after being segmented at the leading edge, the suction-side
and pressure-side wakes behave differently. The suction-side portion wraps around
the stagnation point and is pulled toward the surface by the flow. The pressure-side
portion is under the action of a velocity field with nearly uniform direction but
increasing strength away from the wall (figure 1). The direction of the convective
velocity is nearly perpendicular to the wake axis xwake. The wake is thus rotated
slowly in the counter clockwise direction and convected downstream. Elongation of
the wake is gradual and is nearly transverse to the base flow. Along the downstream
half of the pressure surface, the flow velocity undergoes a change in direction and
increase in magnitude. The velocity is turned such that it becomes nearly parallel to
the wake axis xwake. The resulting strong streamwise velocity gradient severely strains
the wake, dramatically stretching and thinning it.

Figure 6 shows contours of instantaneous velocity magnitude over one (x, y)-plane
at three consecutive instants within one wake passing period. These cross-sectional
plots give the locations of the migrating wake at selected phases, and can be used as
references in subsequent discussion.

Prior to entering the passage, the wake defect flows against the inflow – towards
negative y and negative x. Once a bow is formed, contours inside the upper arm bulge
towards positive y and negative x. This is due to the turning of the base flow. The
velocity deficit in the original wake is converted to an excess. The excess diminishes
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as the wake is shifted towards the downstream half of the pressure surface. Stretching
of wake material particles parallel to the wall (figure 5) reduces the density of mean
spanwise vorticity, weakening the flow.

Relatively strong turbulent fluctuations at the bow apex after the summit are seen
in figure 6. These fluctuations originate well away from the wall. This is a result of the
vorticity concentration from the streamtube convergence shown in figure 5. Vortex
stretching in the streamwise direction after the summit further enhances turbulence in
the apex region. Alternatively, the Reynolds stress transport equation shows that the
strain production term for u′2wake is positive when compression is along the xwake-axis,
as at the apex. The intensification of wake turbulence at the apex and decay near the
pressure surface are qualitatively consistent with the results from Case C and Case D
in Rogers (2000), respectively.

Figure 7 contains contours of instantaneous velocity magnitude in one (x, y)-plane
for the flow without inlet wakes. Counter-rotating spanwise cells can be inferred near
the suction surface trailing edge. These are caused by inflectional instability under
the adverse pressure gradient. The base-flow, no wake, simulation was initiated with
a restart file from the simulation with inlet wakes. In the absence of inlet wakes, the
flow returns to laminar as the simulation progresses, except near the trailing edge
where an instability is maintained.

4. Transition on the suction side
When wakes are present, transition occurs near the leading edge, but the flow

quickly relaminarizes on the suction surface. The tangential velocity component
immediately adjacent to the blade is shown at three consecutive instants in figure 8.
The front of the blade remains turbulent at all times because of the strong local
adverse pressure gradient (figure 3) and because of the way the wake wraps around
the leading edge, producing a persistent disturbance. Toward the back of the blade,
after xw = 0.6, an adverse streamwise pressure gradient again prevails. Transition is
mediated by turbulent spots (Wu et al. 1999), which are seen to form near mid-chord,
to grow, and to merge into the trailing-edge, fully turbulent region. This is a bypass
transition process.

Figure 9 shows that the base-flow is laminar except very close to the trailing
edge. There the suction-side adverse pressure gradient generates an inflection point
instability, producing spanwise rolling cells and instantaneous back flow. This is in
turn followed by Λ vortices, and transition. In other words, the transition in the
absence of wakes is reminiscent of orderly transition (Kleiser & Zang 1991). When
inlet wakes are present bypass mechanisms dominate (Wu et al. 1999).

Contours in figure 8 on the pressure-side surface display large-amplitude spikes.
They move slowly with time and are most apparent for xw > 0.5 where strong
streamwise stretching occurs. They are symptomatic of an intriguing phenomenon.

Figure 10 plots instantaneous fluctuating velocity vectors immediately adjacent
to the pressure side of the blade. The fluctuating velocity is defined relative to the
spanwise-averaged mean flow. Vectors pointing towards the upstream direction form
long narrow axes, corresponding to the low-momentum fluid suggested by the spikes
in figure 9. In figure 10, the precursor of the narrow axes seem to be the relatively large
spanwise features in the region of 0.1 6 xw 6 0.2. Views like this raised the question
of whether Görtler vortices were being triggered by concave curvature. Although the
surface is indeed curved, disturbances are also subjected to intense stretching toward
the rear of the suction surface (figure 5); the features may not be a signature of
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(a)

(b)

Figure 6 (a, b). For caption see facing page.
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(c)

Figure 6. Velocity norm over the (x, y)-plane, z = 0.0; × marks 0.1 6 xw 6 0.9 with increment 0.1.
(a) t = 7.61T, (b) 8.19T, (c) 8.52T.

Figure 7. No wake: velocity norm over the (x, y)-plane, z = 0.0 at one instant;
× marks 0.1 6 xw 6 0.9 with increment 0.1.



212 X. Wu and P. A. Durbin

(a)

(b)

(c)

Figure 8. v velocity component over the suction (dark lines) and pressure (light lines) surfaces at
three instants; − .− marks 0.1 6 xw 6 0.9 with increment 0.1. (a) t = 7.73T, (b) 7.86T, (c) 8.00T.
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Figure 9. No wake: v velocity component over the suction (dark lines) and pressure (light lines)
surfaces at one instant; − .− marks 0.1 6 xw 6 0.9 with increment 0.1.

Figure 10. Instantaneous fluctuating velocity vectors (with respect to spanwise-averaged mean)
adjacent to the pressure surface at 8.00T; —— marks 0.1 6 xw 6 0.9 with increment 0.1.
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Figure 11 (a–d). For caption see facing page.
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Figure 11. Fluctuating velocity vectors (spanwise-averaged mean subtracted) in the plane perpen-
dicular to the pressure surface at xw = 0.3. (a) t = 8.00T, (b) 8.38T, (c) 8.63T, (d) t = 8.96T,
(e) 9.22T, (f) 9.43T, (g) 9.59T, (h) 10.00T.
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Görtler vortices. The origin of these near-surface streaks was investigated by various
vortex identification methods, as described in the following sections.

5. Vortices identified in spanwise and wall-normal planes
Velocity vectors in planes normal to the surface show clearly that the flow features

are vortices, not jets, along the surface. Figure 11 shows fluctuating velocity vectors
over a spanwise section at xw = 0.3, covering 8 consecutive instants over 2 wake
passing periods. The wall-normal distance extends from 0 at the pressure surface to
0.06 inside the passage. The spanwise-averaged mean has been removed from the
vectors. The spatial locations of the free-stream passing wakes at different phases can
be found by referring to figure 6. Vectors are shown only at a small subset of the
computational nodes.

Counter-rotating vortex pairs with varying strength are seen in figure 11(a). Unequal
strengths can be seen even between the two vortices within a single pair. We are
interested in their connection with the free-stream passing wake.

The sequence of figures 11(b)–11(f) covers one full wake passing period, from
8.38T to 9.43T. At both ends of the time interval, the migrating wake intersects
this particular plane. The three strong, large rotating cells in figure 11(b) centred at
n ≈ 0.03 are from the passing wake. The origin of these fairly regular structures is
discussed in § 6.

Figure 11(c) shows that after the free-stream wake has passed this cross-section
plane, a disturbance lingers in the near-wall region. There are three isolated vortices
near the wall, each having the same sense of rotation as its precursor – the cell higher
above the wall but at approximately the same z at the earlier time, t = 8.38T, of
figure 11(b). It will be shown in § 6 that both cells belong to the same vortex element.
The vortex at 0.03 < z < 0.06 is stronger than the other two, so they sum to zero
across the span, as required.

As the primary vortices descend towards the wall, they induce vortices with the
opposite sense of rotation under the constraint of no-slip. Figure 11(d) shows how
pairs of counter-rotating vortices are formed. Finally, figure 11(e) shows how the
vortices attenuate as they begin to be overwhelmed by the next passing wake, arriving
in figure 11(f). The process repeats beneath the new wake.

The streamwise velocity component is contour plotted in figure 12. Actually, only
the contours of the negative fluctuating streamwise velocity are plotted for better
visualization. The spanwise and wall-normal plane is now at xw = 0.7. The times
shown are the same as in figure 11. The wake passes this plane at a later time
because it is farther downstream. The mushroom shape of these contours is typical of
low-speed streaks produced by upwash of counter-rotating vortex pairs (Lee & Liu
1991). In between the vortices in a pair, low-momentum fluid is transported away
from the wall, and is spread laterally as it flows up and over them. The stems of
the mushrooms correspond to the narrow, negative fluctuating velocity axes shown
in the vector plot of figure 10. For example, the five axes in figure 10 (t = 8.00T) at
xw = 0.7 are the streamwise–spanwise cut through the five mushrooms appearing in
figure 12(a).

In figure 12 the majority of the mushrooms are seen to be asymmetric: the larger
half is associated with the stronger of the two counter-rotating vortices in one pair.
Decay, merger and growth of the mushrooms can be observed in the figure. When a
single strong vortex from the wake descends towards the surface, multiple mushrooms
in the nearby region experience substantial modification and re-organization. Further
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Figure 12. Negative fluctuating streamwise velocity component (with respect to spanwise-averaged
mean) in the plane perpendicular to pressure surface at xw = 0.7; contour level from 0 to −0.3 with
increment −0.015. (a) t = 8.00T, (b) 8.38T, (c) 8.63T, (d) 8.96T.
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Figure 13 (a–d). For caption see facing page.
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Figure 13. Fluctuating velocity vectors (spanwise-averaged mean subtracted) in the plane perpen-
dicular to pressure surface at xw = 0.7. (a) t = 8.00T, (b) 8.38T, (c) 8.63T, (d) 8.96T, (e) 9.22T,
(f) 9.43T, (g) 9.59T, (h) 10.00T.



220 X. Wu and P. A. Durbin

details on the correlation between wake disturbance and development of the near-wall
mushrooms can be easily extracted by comparing figure 12 and figure 13.

In figure 11, fluctuating velocity vectors away from the wall return to very small
levels after the wakes pass. Disturbances from the passing wakes show up with distinct
periodicity. This is unlike the disturbances shown in figure 12 and figure 13. Figure 13
shows the fluctuating velocity vectors at the same time coordinates as in figure 11,
but now in the same plane as figure 12. Turning of the turbine passage is such that at
xw = 0.7 the pressure surface is nearly parallel to the stretched wakes (figure 8). The
severely strained wakes manifest themselves in figure 8 in the form of a narrow band
of high velocity fluctuation. In addition, wakes from different passing periods overlap
with each other. Thus in figures 12 and 13 disturbances from the free-stream wakes
are observed to be preset at nearly all of the eight instants. This is in stark contrast
to the situation at xw = 0.3, where the wake is present at only two of these times.

6. Vortices identified in three dimensions
We have argued that the pressure-side vortices are not Görtler vortices induced

by instability of the concave boundary layer; rather they are most likely a forced
response to the incident wake. So far the data presented are tantalizing, but difficult
to assemble into a clear picture of the process. The most compelling evidence comes
from three-dimensional visualization of the wake distortion. Producing such views
raises the much debated question of how to identify a vortex. We have used both
the Q > 0 and λ2 < 0 techniques (Jeong & Hussain 1995), with similar results. For
the figures in this section we have chosen to show zones of λ2 < 0. λ2 is the second
largest eigenvalue of S2 +Ω2, where S and Ω are the symmetric and antisymmetric
components of the velocity gradient tensor ∇u, respectively. Q is the second invariant
of the velocity gradient tensor.

Figure 14 shows three-dimensional, perspective views of negative-λ2 regions at three
consecutive instants. The time span covers one full passing period from 8.00T to
8.96T. Jeong & Hussain (1995) proposed that regions of negative λ2 identify a vortex
core. Before computing λ2 for figure 14, the spanwise-averaged mean velocity was
subtracted; hence these are vortices of the fluctuating field. λ2 was also computed
with the mean spanwise-averaged velocity being retained; the vortices identified from
the total velocity and from the fluctuating velocity were almost identical.

Figure 14 shows that prior to entering the turbine passage the wake does not exhibit
distinct vortical structures. Straining of the incoming wake starts to be applied near the
stagnation point on the pressure side. As discussed in § 3, the local wake is stretched
approximately along the xwake-axis and compressed along ywake. The consecutive time
sequence plots in figure 14 follow the response of wake vortical structures to the
straining.

Fluctuating vortex filaments in the upstream wake do not show a strong preferred
orientation, and are close to random with respect to the principal axes of strain. They
form a layer of vortices embedded in the mean wake. Stretching aligns the vortex
filaments towards the axis of principal stress σ1 and intensifies vorticity magnitude in
that direction. Further stretching gradually collapses this layer of vortex filaments into
circular tubes. This strained wake is much more complicated than in previous studies,
but its initial response to stretching shows some broad similarities to cases studied in
Sutera et al. (1963), Sadeh (1968), Keffer (1965) and Rogers (2000). Nevertheless, the
nature of the initial response in the present flow is difficult to anticipate – even more
so for the subsequent development and interaction with the wall.
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As the cumulative effect of the rate of strain is felt, the circular tubes become pro-
gressively more distinct. They might be considered as leg elements of some extremely
long hairpin vortices. The head of the hairpin is immersed inside the wake and not
clearly visible, but it is needed in order for the vorticity to be solenoidal.

While we cannot offer a detailed analysis of the distortion process, the essential
formative elements are those displayed in figures 4(a) and 4(b): reorientation by
convection and mean straining. The turbine passage creates these elements in a
concrete setting. It provides large total strains and an incident wake with its axis
skewed to the flow direction. Flow gradients in the passage re-orient the wake axis.
The further component of the turbine is the blade surface.

Note, again, that the legs away from the wall upstream of xw = 0.4 are not parallel
to the main flow. These free-stream legs constitute the primary longitudinal vortices.
At the pressure surface the legs are dragged downstream with the migrating wake
and flattened against the wall. The term ‘longitudinal’ is used loosely in this paper;
the terminology is indicated in figure 1. Away from the pressure surface and upstream
of xw = 0.4, the ‘longitudinal’ vortex axis is not parallel to the main flow streamwise
direction; it is approximately aligned with xwake and with the direction of stretching.
With the turning of the turbine, wakes are gradually rotated counterclockwisely,
causing more and more of the leg to attach to the pressure surface. Thus the flattened
primary vortices at the wall are continuously fed by the descending free-stream legs.
Figure 14 also shows the dramatic degree of stretching and thinning of the primary
vortices near the downstream half of the pressure surface. A dramatic difference
between the pressure- and suction-side wakes is also evident. The latter are highly
irregular, with a good deal of small-scale turbulence. The orientation of the wake
approximately in the direction of negative rate of strain is responsible for this different
evolution. Compression along the wake increases the velocity defect and intensifies
turbulence.

In § 5, we observed in cross-section the engulfing of near-wall counter-rotating
vortex pairs by a new passing wake. The process is visualized in three dimensions by
figure 15. This figure shows regions of negative λ2 within a wall-normal distance of
0.03 from the pressure surface. The flattened primary vortices and induced secondary
vortices are inside this wall-normal range (figure 11). The three instants are the same
as those in figure 14. In figure 15, grid lines from xw = 0.1 to 0.9 are overlaid on the
pressure surface. Compared to figure 14, in which the full passage is shown, figure 15
presents a more refined picture of the inception and development of streamwise
vortices. In the figure, the round knob near the upstream end is where the free-stream
leg is bent at the wall. Starting from figure 15(a), the dragging of the primary vortices
is seen quite clearly by following the downstream convection and elongation of that
knob structure through the set of temporal frames. The induction of an adjacent
secondary streamwise vortex is also evident.

7. Time-averaged statistics
The focus of this paper is on the wake distortion. We will present only a few plots

of statistical data. Without the previous flow visualizations some of these statistics
would be mysterious. As it stands, they can be seen as signatures of the vortical
features.

Figure 16 shows that the three r.m.s. velocity fluctuations peak at different normal
distances. They are consistent with the velocity vector plots in figure 11: strong
spanwise fluctuations occur at the bottom surface of the vortex, where the image
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Figure 14 (a, b). For caption see facing page.
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Figure 14. Regions of negative λ2 inside the turbine passage. (a) t = 8.00T, (b) 8.38T, (c) 8.96T.

effect enhances it (figure 11c); the largest wall-normal fluctuations occur at the central
top surface of the vortex (tip of the mushroom); the peak streamwise fluctuation is
found in between, also in the upwash region.

Profiles of the mean velocity component tangential to the pressure surface versus
wall-normal distance are plotted in figure 17. Also shown are the velocities in the
base flow, with no wake. Evidently, the effect of the longitudinal vortices on the mean
flow is limited to within 3% of axial chord from the surface. That is consistent with
earlier vector plots of the velocity field.

Profiles of spanwise velocity fluctuations w′2 are shown in figure 18. Most noticeable
in the figure is the existence of a plateau in the two profiles at xw = 0.4 and 0.5.
The r.m.s. spanwise fluctuation in figure 16 also has a distinct plateau. This can
be explained by comparing figure 11, at xw = 0.3 to figure 13, at xw = 0.7. At
the upstream location, the near-wall vortices are modulated by free-stream passing
wakes with distinct periodicity. Relatively large spanwise fluctuations are found near
the top surface of the vortices. Beyond this surface, spanwise fluctuations drop
rapidly with wall-normal distance, thus forming a plateau in the w′2 profiles. At
the downstream location, after the flow is turned by the blade passage, free-stream
spanwise fluctuations are present almost all of the time.

The turbulent intensity is plotted in figure 19. Wall-normal profiles of u′2 + v′2 +w′2
are provided at the same six streamwise stations as in the previous figure. The plateau
is now in the profiles downstream of xw = 0.5. This can be explained by comparing
the less developed structures at xw = 0.3 in figure 11(h) to the matured structures,
also shown in figure 12. In figure 12 the round heads of the mushrooms form a region
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Figure 15. Regions of negative λ2 near the pressure surface; —— marks 0.1 6 xwall 6 0.9 with
increment 0.1. (a) t = 8.00T, (b) 8.38T, (c) 8.96T.
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Figure 16. Time-averaged r.m.s. velocity and pressure fluctuations as functions of normal distance
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Figure 17. Time-averaged mean streamwise velocity (tangent to the pressure surface); thick lines:
with wake; thin lines: no wake; (a) ——, xw = 0.2; — —, 0.4; , 0.5; (b) ——, xw = 0.6;
— —, 0.7; , 0.8.

in which streamwise fluctuations are relatively large. Beyond the top surface of the
mushrooms there is a rapid reduction in the magnitude of streamwise fluctuation
with increasing wall-normal distance.

8. Concluding remarks
New phenomenon of fundamental fluid mechanical interest have emerged from

these numerical simulations of migrating wake flow. A process was uncovered by
which flow features descend from a passing wake and become near-wall features.
When viewed in isolation, or within a single spanwise and wall-normal plane, surface
longitudinal vortex pairs appear to show conventional signatures of Görtler vortices;
however, they are not produced by a Görtler instability. The evidence presented herein
is that they are a forced response to the incident wake. Their formation is preceded
by a selective intensification of longitudinal vortices within the strained wakes. These
vortices are then deposited onto the wall.
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Figure 18. Time-averaged spanwise velocity fluctuations: (a) ——, xw = 0.2; — —, 0.4;
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Figure 19. Profiles of u′2 + v′2 + w′2: (a) ——, xw = 0.2; — —, 0.4; , 0.5;
(b) ——, xw = 0.6; — —, 0.7; , 0.8.

Sutera et al. (1963) described the process of vorticity amplification and vortex
filament re-orientation by stretching round a blunt stagnation point. While there has
been speculation that long vortices might similarly arise from turbulence wrapped
around the leading edge of a turbine blade, the present simulations show how the
vortices can emerge even in the middle of the passage. Indeed, stretching round the
leading edge only influences the suction surface; but the selective amplification of
longitudinal vortices is restricted to the vicinity of the pressure surface.

A substantial total strain evolves beyond the stagnation point on the pressure
surface. At first, circular vortex tubes aligned in the direction of stretching emerge.
These primary vortex tubes can be considered as leg elements of some sort of hairpin
structure. The stretching initially is not parallel, but nearly transverse, to the local
main flow direction.

Subsequent development and interaction with the wall is quite dramatic. The
primary vortices are dragged downstream and flattened against the blade pressure-
side surface. There they become streamwise vortices, parallel to the wall. Under the
constraint of no-slip, secondary vortices are generated, with the opposite sense of
rotation to the primary vortices; thus vortex pairs appear adjacent to the surface. As
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they move downstream, these pairs tend to be engulfed by the structures laid down
by the next passing wake.

Sharp turning of the turbine passage causes the free-stream vortices to descend
towards the wall over the downstream half of the pressure side. By contrast, the
wake wraps around the leading edge of the suction surface, but then travels above
it. A bow forms between the pressure- and suction-side wakes. Spanwise vorticity of
opposite signs accumulates at the apex of the bow, which becomes a region of intense
turbulence.

The strong longitudinal vortices that form in the passing wake may have practical
engineering importance. It is known that the turbine pressure surface can run hotter
by as much as several hundred degrees Kelvin than the suction surface (Sharma &
Stetson 1998). Of course, this is an issue in the high-pressure turbine, while the flow
here is that of a low-pressure turbine; however, some of our observations may be
relevant. Heat transfer enhancement by longitudinal vortices is discussed by Sutera et
al. (1963). Intense streamwise vortices, descending from passing wakes, could play the
same role, especially for the flow near the downstream half of the pressure surface.

This work is supported by the Academic Strategic Alliance Program of the U.S.
Department of Energy Accelerated Strategic Computing Initiative. The computations
were performed on the SGI Origin 2000s at the Advanced Computing Laboratory of
Los Alamos National Laboratory.

REFERENCES

Duden, A., Raab, I. & Fottner, L. 1999 Controlling the secondary flow in a turbine cascade
by three-dimensional airfoil design and endwall contouring. ASME J. Turbomachinery 121,
191–199.

Engber, M. & Fottner, L. 1996 The effect of incoming wakes on boundary layer transition
of a highly loaded turbine cascade. Loss Mechanisms and Unsteady Flows in Turbomachines.
AGARD-CP-571.
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